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Abstract—In the ongoing battle against global pandemics,
understanding the key determinants that fuel outbreaks are
of paramount importance. With this focus, our study aims to
assess and rank the predictive capabilities of a wide range
of socio-economic, eco-climatic, and spatiotemporal variables in
predicting Lassa Fever (LF) outbreaks, using data from previous
Nigerian outbreaks (2012-2019). Employing machine learning
methods, particularly XGBoost and Random Forest, our study
aims to offer accurate and robust predictions concerning LF
incidence rates. As a crucial add-on, we leverage the innovative
SHAP (SHapley Additive exPlanations) technique as a post-
processing tool to dissect and better understand the contributions
of individual features towards the predictions generated by our
machine learning models. This multi-layered approach allowed
us to place a pronounced focus on healthcare infrastructure,
population demographics, land cover, and other climatic co-
variates. Among the models evaluated, XGBoost performed
the best; delivering an accuracy of 0.93, and AUC of 0.90,
and an F1 score of 0.86 on 2018 data. For 2019 data, it
maintained a strong accuracy of 0.90, an AUC of 0.89, and
an F1 score of 0.75. Our SHAP analysis further emphasized
precipitation seasonality, diagnostic center density, and land
cover characteristics as pivotal influencers in predicting LF
outbreaks. These findings shed light on the complex interplay
between environmental conditions, urbanization, and healthcare
infrastructure. Given these promising results, our work sets
the stage for the development of an advanced early warning
system for Lassa Fever in Nigeria: a system that could efficiently
intertwine computational insights with on-ground interventions,
ensuring timely and targeted responses to potential outbreaks.

Index Terms—Lassa Fever, Computational Epidemiology, Ma-
chine Learning, SHAP, Africa, Public Health, Nigeria

I. INTRODUCTION

Lassa Fever (LF) is a viral hemorrhagic illness, similar to
Ebola viral fever [1]. It is prevalent in many regions of West
Africa, with Nigeria having the highest number of recurrent
outbreaks. It was named after a town in northern Nigeria,
where it was first discovered in 1969. Lassa mammarenavirus
(LASV) is the etiological agent responsible for LF and poses
a significant threat to both human and animal populations.
Classified as an old-world arenavirus, LASV is a single-
stranded, bipartite RNA virus [2], [3]. Over the years, seven
distinct lineages of LASV have been identified across West

Africa, three of which have been observed in Nigeria since
its initial discovery in the 1960s [4]. The primary reservoir
of LASV is Mastomys natalensis, a small rodent species
commonly found in Africa [2], [3], [4], [5], [6]. Notably, in a
study conducted in Nigeria, found that more than half (53.6%)
of captured rodents tested positive for LASV [8]. Interestingly,
Mastomys natalensis does not exhibit the typical symptoms of
LF experienced by humans but serves as a lifelong carrier,
secreting the virus through urine or droppings. Transmission
of LASV to humans predominantly occurs through direct or
indirect contact with infected rodents.

Once LASV enters the human body, an incubation period
of 6 to 21 days elapses before the initial signs of symptoms
emerge [4], [7]. The majority of LF infections (80%) present
with either mild symptoms or are entirely asymptomatic, mani-
festing as fever, headaches, and malaise. However, the hospital
fatality rate is about 26.5%, and the general rate is believed to
be considerably higher, as many cases are usually unreported
due to inadequate monitoring and evaluation infrastructure
[8], [9]. In approximately 20% of infected individuals, severe
symptoms associated with hemorrhagic fevers ensue [7]. These
severe manifestations involve internal bleeding in the stomach,
small intestines, and brain, as well as inflammation of the
liver and kidneys. Additionally, around 29% of patients report
temporary or permanent deafness [10]. Recent data indicate
an alarming increase in the incidence rate of LF in Nigeria.
During 2018, the Nigerian CDC reported a total of 1893
suspected LF cases, of which 423 were laboratory confirmed
[11]. The reported case fatality rate stood at an astonishing
25.1%. Previous studies have aimed to quantify and establish
relationships between specific ecological and climatic drivers
and the rise of LF cases in West Africa [12], [13]. In them,
they found that LF transmission is known to be influenced by
a multitude of biotic and abiotic factors.

One study revealed that the peak number of LF infections
in Nigeria occurred between December and March from 2016
to 2018, possibly due to rodents’ close proximity to humans
during the dry season when food is scarce [12]. Another in-
vestigation demonstrated a correlation between certain abiotic



factors, such as rainfall, temperature, geographic features, and
the increased incidence of LF cases in Nigeria [13]. Although
studies such as [14], [15], [16] have employed statistical
methods to examine the correlation between biological and
environmental processes and the rise of LF cases, few, if any,
have utilized machine learning models to rank the various
abiotic drivers of LF cases specifically in Nigeria.

In this study, we aim to assess the predictive capabilities
of socio-economic, eco-climatic, and spatiotemporal variables
in predicting LF outbreaks across Nigeria during a two-year
period from 2018 to 2019. To achieve this, we employ ensem-
ble machine learning methods, namely XGBoost and Random
Forest, to make accurate predictions regarding LF incidence.
Subsequently, we employ SHAP as a post-processing tech-
nique to determine the most influential drivers for predicting an
outbreak. Through our investigation, we endeavor to contribute
to the understanding of LF dynamics and prioritize the features
that significantly contribute to a positive incidence rate.

II. METHODOLOGY

A. Data Collection and Feature Characterization

Our investigation initiated with an in-depth exploration of
datasets related to LF in Nigeria. We utilized Google Datasets
and employed key search terms such as “Lassa Fever”,
“Nigeria”, and “Lassa Infections”. This approach led us to
a comprehensive dataset [17], previously curated by another
team of researchers, providing epidemiological insights into
LF infections spanning from 2012 to 2019. This dataset
aggregates diverse data sources, including the Nigerian CDC,
the CHELSA climate repository, and various governmental
records. The dataset offers a detailed pictures of LF spread.
Specifically, the data encompasses weekly epidemiological
reports from all 36 states of Nigeria, including the Federal
Capital, all recorded at the Local Government Area (LGA)
level.

To better understand and address LF outbreaks, the dataset
integrates multiple features classes, including geographical,
spatiotemporal, health, socioeconomic, and ecoclimatic vari-
ables. Each feature class is characterized by distinct data
levels, ranging from categorical to numerical measurements,
ensuring a multifaceted analysis of LF outbreak dynamics.
Table 1 provides a detailed overview of the features, their
categories/data levels, feature names, and descriptions.

B. Data Structure and Preprocessing

Once the dataset was chosen, the essential task of pre-
processing began. The dataset was initially loaded into a
Python DataFrame using Pandas, a data manipulation library.
A primary step in our preprocessing involved the conversion
of the Date column to a datetime object, enabling us to extract
the Year as a separate feature. To facilitate machine learning
operations, categorical attributes such as State and LGA names
were encoded into numerical formats using a Label Encoder.
The Cases feature was transformed into a binary classification
target, where any non-zero case count was encoded as 1,
representing an outbreak occurrence, and zero cases as 0.

This binary transformation aimed to streamline the model’s
focus on predicting the presence of LF outbreaks. Lastly, we
addressed potential issues of missing data in our training set
by employing a Simple Imputer with a median strategy. This
approach involves replacing missing values in each column
with the median value of that column, thus preserving the
overall distribution of the data.

Fig. 1. Distribution of Lassa Fever Case Counts in the Dataset

a) Addressing Class Imbalance in Dataset: One inherent
challenge in our dataset is the significant class imbalance, a
common issue in epidemiological datasets, particularly those
dealing with disease outbreaks. The majority of the records
(∼96%) in our dataset reported zero cases of LF, which could
lead to a model bias towards predicting the absence of an
outbreak. This imbalance needed to be addressed to ensure
that our model could effectively identify the less frequent, yet
crucial instances of LF outbreaks.

To counteract this imbalance, we employed the Synthetic
Minority Oversampling Technique (SMOTE) [18]. SMOTE
is an over-sampling method that generates synthetic samples
for the minority class, which in our case was a positive LF
incidence rate reported by an LGA. By creating synthetic, yet
plausible, instances of outbreak occurrences, SMOTE helps in
balancing the dataset. This provides a way for the model to
learn from both classes – outbreaks and non-outbreaks.

By augmenting our training data with the SMOTE strategy,
we ensured that the model was exposed to a sufficient number
of outbreak cases, aiding it its ability to generalize and predict
future outbreaks more accurately. This step was particularly
crucial given the rarity of LF outbreaks, as it prevented the
model from being overwhelmingly influenced by the more
common non-outbreak instances.

b) Choice of XGBoost and Random Forest: We anchored
our decision on XGBoost [19] and Random Forest [20] due
to their ensemble nature. These techniques are renowned
for harnessing the strengths of multiple individual models,
combining their capabilities to deliver strong overall perfor-
mance. Specifically, both XGBoost and Random Forest excel
in uncovering non-linear relationships between input features
and the target variables. Their versatility in their ability to
process categorical and numerical data makes them well suited
for multifaceted datasets like the one we’re employing.



TABLE I
SUMMARY OF FEATURES USED IN ANALYSIS

Feature Category Name Description
Geographical

Categorical State Name of State
Categorical LGA Name of Local Government Area
Numerical AreaKM2 Land Area of LGA in square kilometers

Health & Medical
Numerical Cases Weekly Reported LF cases per LGA
Numerical NumDiagCentres Total LF diagnostic centers in LGA
Numerical (km) LabDist Average Distance to LF diagnostics in LGA
Numerical LabTravelTime Average travel time to nearest LF diagnostic lab
Numerical (km) HospitalDist Average Distance to Hospitals in LGA
Numerical (km) HealthFacilityDist Average Distance to Health Facilities in LGA
Numerical HospitalTravTime Average Travel Time to Nearest Hospital in log minutes

Demographic & Socioeconomic
Numerical TotalPop Total Population of LGA
Numerical AgriProp Percentage of LGA land classified as agricultural
Numerical UrbanProp Percentage of LGA land classified as urban
Numerical ForestProp Percentage of LGA land classified as forest
Numerical ImprovHousing Prevalence of Improved Housing in LGA
Numerical PovertyPropMean Average Poverty Rate in LGA
Numerical PovertyPropWeighted Population-weighted Poverty Rate in LGA

Ecoclimatic
Numerical (°C) TempMean Average Monthly Temperature in LGA
Numerical TempSeasonality Standard Deviation of Monthly Mean Temperature in LGA
Numerical (mm) PrecipTotal Average Monthly Precipitation in LGA
Numerical PrecipSeasonality Standard Deviation of Monthly Mean Precipitation in LGA

C. SHAP: Our Interpretative Tool

In our study, we employ SHAP to interpret the contributions
of individual features to the model’s predictions [21]. Rooted
in cooperative game theory, SHAP is able to quantify the
impact of each feature on a prediction.

A key strength of SHAP is its ability to offer local and
global explanations. On a local level, it explains the reasoning
behind a model’s specific prediction for a single instance.
Globally, it aggregates all the instances, revealing the overall
significance of each feature across the dataset.

In our context, SHAP enables us to identifying the factors
that influence the likelihood of LF outbreaks. By understand-
ing which features - such as climate, population density, or
availability of health facilities - play a crucial role in the
model’s predictions, we can provide stakeholders with valuable
insights for targeted interventions.

D. Training the Model

The training of the models was a multi-faceted process,
incorporating various steps to ensure the effectiveness and
accuracy of the predictions. After preprocessing the dataset,
we proceeded with the training phase, utilizing data from 2012
up to 2017 to train our models, while the data for years 2018
and 2019 were reserved as separate test sets. This division
allowed us to evaluate the performance of our models on
unseen data, reflective of more recent conditions.

a) Hyperparameter Tuning for XGBoost: In tuning the
XGBoost model, we employed RandomizedSearchCV to ex-
plore a diverse set of hyperparameters efficiently. This method
was chosen due to its ability to cover a broad parameter space
with fewer iterations compared to GridSearchCV, significantly

reducing computation. The hyperparameters tuned and ratio-
nale for their ranges are as follows:

• n estimators: We varied the number of trees in the
ensemble from 50 to 500. This range allows us to explore
the trade-off between underfitting and overfitting. Fewer
trees can lead to underfitting, whereas more trees increase
the model’s complexity and potential for overfitting but
can capture more detailed patterns in the data.

• max depth (3 to 10): Controlling the depth of each
tree is crucial for balancing the model’s ability to model
complex relationships without overfitting. A maximum
depth of 10 ensures the model is deep enough to learn
significant interactions but not so deep that it fits overly
specific patterns.

• learning rate (0.01 to 0.3): This parameter moderates
the impact of each individual tree on the final outcome,
helping to prevent overfitting by making the model more
conservative. A lower learning rate requires more trees
to achieve model convergence, promoting a more robust
ensemble by integrating more nuanced patterns.

• subsample and colsample bytree (0.6 to 1.0): These
parameters determine the fraction of samples and features
used for building each tree. By using a subset of the data,
the model is less likely to learn noise and more likely to
generalize well to new data.

• min child weight, gamma, and regularization terms
reg alpha and reg lambda (ranging from 0 to 1): Fine-
tuning these parameters adds layers of complexity con-
trol. Higher values help in regularizing the model further,
preventing overfitting by smoothing the learned patterns.

A total of 25 different parameter combinations were tested,



with the primary objective of maxmizing the ROC AUC score,
ensuring that the model not only fits well but generalizes well
on unseen data.

b) Hyperparameter Tuning for Random Forest: For the
Random Forest model, we utilized GridSearchCV, which eval-
uates all possible combinations of provided hyperparameters.
This exhaustive search method was selected because it ensures
that the best possible combination is identified, crucial for
achieving optimal performance in our predictive modeling.
The hyperparameters tuned, along with the reasons for their
ranges, include:

• n estimators: The number of trees, tested at 100, 200,
and 300, was chosen to determine the optimal count that
balances computational efficiency with predictive accu-
racy. A higher number of trees generally provides better
performance but at the cost of increased computational
load and potential diminishing returns.

• max depth (10, 20, 50): These values were selected to
test various levels of complexity. A depth of 10 may
prevent overfitting in scenarios with less complex data,
whereas 50 allows for a deeper tree that can capture more
complex patterns at the risk of overfitting.

• min samples split and min samples leaf (values 2, 5,
and 10 for split; 1, 2, and 4 for leaf): These parameters
control the minimum number of samples required at a
leaf node and a split point. Setting these values ensures
that the trees do not grow too deep or too specific,
which helps in preventing overfitting and maintaining the
generalizability of the model.

• bootstrap: The parameter was evaluated both as True
and False to assess whether bootstrap sampling (sampling
with replacement) enhances the model’s accuracy and
stability. Bootstrap sampling typically helps in building
more diverse trees, reducing the variance component of
the model error.

The performance of each configuration was assessed using a
3-fold cross-validation focusing on the ROC AUC score. This
validation method was particularly chosen to ensure that our
model evaluations are robust and reliable.

III. RESULTS

A. Optimal Hyperparameter Configurations

The optimal values obtained from hyperparameter tuning are
presented in Table 2. Note: ”-” indicates that the parameter is
not applicable for the respective model.

B. Evaluation of Model Performance

To decide the more suitable model between XGBoost and
Random Forest algorithms, we relied upon two primary met-
rics: F1 score and Area Under the Curve (AUC) score. The
AUC score measures the ability of a model to distinguish
between classes, specifically in terms of the area under the
Receiver Operating Characteristic (ROC) curve. In addition,
the F1 score provides a comprehensive measure of a model’s
performance by factoring in both precision and recall. A high
F1 score indicates proficient identification of positive examples

TABLE II
OPTIMAL HYPERPARAMETERS FOR XGBOOST AND RANDOM FOREST

Parameter XGBoost Random Forest
Colsample bytree 0.6734 -
Gamma 0.1521 -
Learning rate 0.1674 -
Max depth 6 10
Min child weight 1 -
N estimators 98 300
Reg alpha 0.5248 -
Subsample 0.6187 -
Bootstrap - True
Class weight - Balanced
Min samples leaf - 4
Min samples split - 2

Fig. 2. ROCAUC Plot for XGBoost and Random Forest Models (2018-2019)

and minimizing the false labeling of negatives and positives.
The XGBoost model showed impressive results in the year
2018, achieving an accuracy of 93.10%, an AUC score of 0.90
and an F1 score of 0.8611. In 2019, the model maintained
a robust performance, though with a decrease in all metrics,
recording an accuracy of 90.14%, an AUC of 0.89, and an F1
score of 0.7583. Turning to the Random Forest algorithm, the
model achieved an accuracy of 90.86%, an AUC of 0.88, and
an F1 score of 0.7139 on 2018 data. For the following year,
the model recorded an accuracy of 88.44%, an AUC of 0.89
and an F1 score of 0.7448.

Fig. 3. SHAP Global Bar Plot for XGBoost Model on 2018-2019 Data



C. Feature Importance Analysis
Now that we’ve established XGBoost as the superior model,

our next step was to identify the significant factors influencing
Lassa Fever infections in Nigeria. For this step, we utilized
the SHAP technique for post-processing the XGBoost model
to gain a deeper insight into influential features. As depicted
in Fig. 1, we can see that SHAP Global Plot for 2018-2019
dataset pinpointed the proportion of land designated as urban
area as the most influential feature. This was followed by
proportion of land designated as forest area, the number of
diagnosis centers, precipitation seasonality, and the proportion
of land designated as agriculture.

IV. DISCUSSION

A. Relevance of SHAP in Understanding Influential Features
Understanding what drives a machine learning model’s

prediction is essential, especially when decisions derived from
these predictions have substantial real-world implications.
SHAP serves as a clarity and helps quantify each feature’s
contribution to the prediction, enabling us to dissect which fac-
tors (like environmental conditions or healthcare accessibility)
significantly sway the likelihood of an outbreak. By employing
SHAP analysis, policymakers and public health officials can
devise targeted interventions, ensuring resource allocation is
both efficient and impactful.

Fig. 4. SHAP Beeswarm Plot for XGBoost Model on 2018-2019 Data

B. Interpreting SHAP Plots within Lassa Fever’s Seasonal
Epidemiology

a) Understanding the SHAP Beeswarm Plot: Just like
the global bar plot, the order of features, from top to bottom,
indicate the importance in a beeswarm plot while unraveling
the direction of each feature’s influence. Each dot represents
an individual prediction, or sample. It’s position along the
x-axis represents the SHAP value for that specific sample
and the spread of these dots captures the distribution spec-
trum of SHAP values per feature. Dots leaning towards the
right (positive SHAP values) denote a feature amplifying the
model’s prediction for that sample. In contrast, those on the left
suggest a suppressive effect. This positional data, combined
with the color coding (blue indicating lower values and red
signifying higher values), enables a greater understanding of
feature influence.

b) Ecological Influence on Outbreak Predictions: Urban
areas, identified as the most significant feature, are charac-
terized by dense populations and increased human-to-human
contact, therefore increasing the chance for LF transmission.
The model’s sensitivity to urbanization, as shown by the far
right concentration of red dots, suggests that outbreaks may
be more likely or easily detected in these areas.

The ’ForestProp’ feature, representing the proportion of
forested land within an LGA, displayed a complex pattern
on the beeswarm plot. A mixture of red and blue dots near
center right and a string of blue dots extending to the left
suggests that impact of forestation on LF predictions may
not be unidirectional. High forest cover (red dots) sometimes
correlates to increased predictions of outbreaks as dense
vegetation may provide a habitat for the rodent hosts. On
the other hand, blue dots on the left signifies instances where
greater forestation may be associated with reduced prediction
of outbreaks, perhaps because of less human interactions in
these regions.

Similarly, ’PrecipSeasonlity’ and ’TempSeasonlity’ offer
insights into the environmental context of LF outbreaks. The
variability in precipitation and temperature could affect the
survival and breeding patterns of rodent populations, poten-
tially influencing incidence of LF. A wide dispersion of SHAP
values for these features indicates that both higher and lower
seasonality in precipitation and temperature play a role and
impact on the disease dynamic.

c) Healthcare Accessibility and Living Standards as Pre-
dictors: The SHAP analysis reveals surprising correlations
between healthcare infrastructure and predicted outbreak fre-
quencies. The NumDiagCentres variable, representing the
number of diagnostic centers within an LGA, emerged as a
significant predictor. As seen in the SHAP beeswarm plot (Fig.
3), it shows a predominantly positive SHAP value, indicating
that a higher number of centers tends to correlate with an
increase prediction of outbreaks. At a glance, this might
appear counterintuitive, as one could assume that regions
with more centers would be better prepared to diagnose and
manage infections. However, upon considering the potential
for reporting bias, it becomes clear that areas with fewer
diagnostic centers may be underreporting due to their restricted
capabilities. Consequently, our model is inclined to highlight
regions reporting a surge in cases, not necessarily because
they inherently experience more cases, but rather due to their
enhanced detection capabilities.

For LabDist, the average distance to the nearest diagnostic
lab, we observe a concentration of higher SHAP values for
smaller distances. This pattern aligns with expectations that
increased distances to healthcare facilities could be a barrier
to timely diagnosis and treatment, potentially allowing for
greater spread of the disease before containment measures can
be implemented.

This nuanced understanding of the relationship between
Lassa Fever incidence and variables related to healthcare
access and housing standards is crucial. It suggests that
enhancing healthcare infrastructure and improving housing



conditions, while inherently beneficial, must be part of a
broader, more coordinated public health strategy that considers
the local context and an array of intersecting factors.

C. Conclusion

This study has demonstrated the power of machine learning
in enhancing our understanding and prediction of Lassa Fever
outbreaks in Nigeria. By employing XGBoost and Random
Forest models, enhanced with SHAP for interpretability, our
research offers a novel, robust approach to predicting LF
incidence rates based on a wide range of socio-economic, eco-
climatic, and spatiotemporal variables.

Our findings underscore the significance of certain pre-
dictors, such as urban land cover, diagnostic center density,
and precipitation seasonality, in influencing LF outbreaks.
The high performance of the XGBoost model, achieving an
accuracy of up to 93.10%, an AUC of 0.90, and an F1 score of
0.8611, confirms the efficacy of our modeling approach. These
results not only enhance our understanding of the disease’s
dynamics but also pave the way for the development of an
advanced early warning system for LF in Nigeria.

Looking forward, we recommend the integration of real-
time data and the consideration of changing climate patterns
in our models to improve responsiveness and adaptability to
outbreaks. Furthermore, the development of localized models
that account for regional characteristics could provide more
precise predictions and support targeted public health inter-
ventions.

The implications of our study extend beyond the academic
realm into practical applications. By incorporating our findings
into public health strategies, policymakers and healthcare
providers can optimize resource allocation and intervention
strategies, ensuring timely and targeted responses to outbreaks.
Moreover, our approach can serve as a blueprint for other
regions grappling with similar infectious diseases.

In conclusion, while our study has made significant strides
in using machine learning for disease prediction, ongoing
research is essential to refine these models and adapt them
to new challenges posed by global health dynamics. Enhanc-
ing data collection practices and embracing interdisciplinary
collaboration will be critical in advancing our capability to
predict and manage infectious disease outbreaks effectively.
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